题目:已知$X$和$Y$的PDF分别为$p_X(x)$和$p_Y(y)$,求$Z=XY$的PDF。
法一: 求$F(z)$的CDF,然后求导得到PDF。
$$
F(z) = p_{Z}(Z < z) = p_{Z}(XY < z)
$$
通过二重积分可以求得CDF:
$$
F(z) = \int\int_{xy < z} p_X(x)p_Y(y)dxdy
$$
我们以$x$划分积分区域:当$x > 0$时,$y < z/x$;当$x < 0$时,$y > z/x$。所以:
$$
F(z) = \int_{0}^{\infty} p_X(x) \int_{-\infty}^{z/x} p_Y(y)dydx + \int_{-\infty}^{0} p_X(x) \int_{z/x}^{\infty} p_Y(y)dydx
$$
通过对CDF求导,可以得到随机变量Z的PDF:
$$
p_Z(z) = \frac{dF(z)}{dz} = \frac{d}{dz}\left(\int_{0}^{\infty} p_X(x) dx \int_{-\infty}^{z/x} p_Y(y)dy + \int_{-\infty}^{0} p_X(x) dx \int_{z/x}^{\infty} p_Y(y)dy\right)
$$
这里需要用到莱布尼茨积分法则,即:
$$ \frac{d}{dz}\left(\int_{a(z)}^{b(z)} f(x, z)dx\right) = f(b(z), z)b'(z) - f(a(z), z)a'(z) + \int_{a(z)}^{b(z)} \frac{\partial f}{\partial z}(x, z)dx $$
根据莱布尼茨积分法则:
$$
p_Z(z) = \frac{d}{dz}\left(\int_{0}^{\infty} p_X(x) dx \int_{-\infty}^{z/x} p_Y(y)dy\right) + \frac{d}{dz}\left(\int_{-\infty}^{0} p_X(x) dx \int_{z/x}^{\infty} p_Y(y)dy\right) \\ = \int_{0}^{\infty} p_X(x) p_Y(\frac{z}{x})\frac{1}{x} dx - \int_{-\infty}^{0} p_X(x) p_Y(\frac{z}{x})\frac{1}{x} dx \\
= \int_{-\infty}^{+\infty} p_X(x) p_Y(\frac{z}{x})\frac{1}{|x|} dx
$$
法二: 辅助变量法。定义辅助变量 -> 计算雅可比行列式 -> 得到联合PDF变换 -> 边缘化积分。
随机变量$\mathbf{X} = (X_1, X_2, \cdots, X_n)$通过变换$T$映射到$\mathbf{Y} = (Y_1, Y_2, \cdots, Y_n)$,则有:
$$ p_{\mathbf{Y}}(\mathbf{y}) = p_{\mathbf{X}}(T^{-1}(\mathbf{y})) |J_{T^{-1}}| $$
定义辅助变量$W=X$,那么$Y=\frac{Z}{W}$。随机变量$XY$,$X$通过变换
$$
\mathbf{T} = \begin{cases}
Z = XY \\
W = X
\end{cases}
$$
映射到随机变量$Z$和$W$。有逆变换:
$$
\mathbf{T}^{-1} = \begin{cases}
X = W \\
Y = \frac{Z}{W}
\end{cases}
$$
$$
J_{T^{-1}} = \begin{bmatrix}
\frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial z} & \frac{\partial y}{\partial w} \\
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
\frac{1}{w} & -\frac{z}{w^2} \\
\end{bmatrix}
$$
$$
p_{Z,W}(z,w) = p_{X,Y}(w, \frac{z}{w}) |J_{T^{-1}}| = p_X(w)p_Y(\frac{z}{w}) \left| \frac{1}{w} \right| = p_X(w)p_Y(\frac{z}{w}) \frac{1}{|w|}
$$
随机变量$Z$的PDF为:
$$
p_Z(z) = \int_{-\infty}^{+\infty} p_{Z,W}(z,w) dw = \int_{-\infty}^{+\infty} p_X(w)p_Y(\frac{z}{w}) \frac{1}{|w|} dw
$$